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No. of Mantissa bits

1 + 23

1 + 52

No. of Exponent bits

8

11

Exponent Bias Value

127

1023

Tesla Configurable 
Float8 (CFloat8) 
& Float16 (CFloat16) 
Formats

Abstract 
This standard specifies Tesla arithmetic formats and methods for the new 
8-bit and 16-bit binary floating-point arithmetic in computer programming 
environments for deep learning neural network training. This standard 
also specifies exception conditions and the status flags thereof. An 
implementation of a floating-point system conforming to this standard may 
be realized entirely in software, entirely in hardware, or in any combination 
of software and hardware. 
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Motivation 
The original IEEE 754 standard, which was published in 1985 specified 
formats and methods for floating-point arithmetic in computer systems— 
standard and extended functions with single (32-bit), double (64-bit) 
precision. The standard single and double precision formats are shown in 
Table 1 below.

The purpose of the standard was to provide a method for computation 
with floating-point numbers that will yield the same result whether the 
processing is done in hardware, software, or a combination of the two. 
The results of the computation will be identical, independent of 
implementation, given the same input data. Errors, and error conditions, 
in the mathematical processing will be reported in a consistent manner 
regardless of implementation. 

The above formats have been widely adopted in computer systems, both 
hardware and software, for scientific, numeric, and various other computing. 
Subsequently, the revised IEEE754 standard in 2008 also included a half 
precision (16-bit), only as a storage format without specifying the arithmetic 
operations. However, Nvidia and Microsoft defined this datatype in the Cg 
language even earlier, in early 2002, and implemented it in silicon in the 
GeForce FX, released in late 2002.

The IEEE half precision format has been used not just for storage but 
even for performing arithmetic operations in various computer systems, 
especially for graphics and machine learning applications. This format 
is used in several computer graphics environments including MATLAB, 
OpenEXR, JPEG XR, GIMP, OpenGL, Cg, Direct3D, and D3DX. 
The advantage over single precision binary format is that it requires 
half the storage and bandwidth (at the expense of precision and range). 
Subsequently, the IEEE half precision format has been adopted in machine 
learning systems in the Nvidia AI processors, especially for training, due to 
the significantly increased memory storage and bandwidth requirements 
in such applications. 

More recently, Google Brain, an artificial intelligence research group at 
Google, developed the Brain Floating Point, or BFloat16 (16-bit) format 

Format

Single Precision (Float32)

Double Precision (Float64)

Sign bit?

Yes

Yes

Table 1: Floating Point Formats defined by the IEEE 754 Standard
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in their TPU architecture for their machine learning training systems. 
The BFloat16 format is utilized in Intel AI processors, such as Nervana 
NNP-L1000, Xeon processors (AVX-512 BF16 extensions), and Intel FPGAs, 
Google Cloud TPUs and TensorFlow. ARMv8.6-A, AMD ROCm, and CUDA 
also support the BFloat16 format. On these platforms, BFloat16 may also 
be used in mixed-precision arithmetic, where BFloat16 numbers may be 
operated on and expanded to wider data types, since it retains the dynamic 
range of the Float32 format. The BFloat16 format differs from the IEEE 
Float16 format in the number of bits provisioned for the mantissa and 
exponent bits. These two formats are shown Table 2 below. 

As deep learning neural networks grow, the memory storage and bandwidth 
pressure continue to present challenges and create bottlenecks in many 
systems, even with the Float16 and BFloat16 storage in memory. 

No. of Mantissa bits

1 + 10

1 + 7

No. of Exponent bits

5

8

Exponent Bias Value

15

127

Format

Table 2: IEEE 16-bit Floating Point and Brain 16-bit Floating Point formats

IEEE Half Precision(Float16) 

Brain Floating Point (BFloat16) 

Sign bit?

Yes

Yes
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Tesla CFloat8 Formats Tesla extended the reduced precision support further, and introduced the 
Configurable Float8 (CFloat8), an 8-bit floating point format, to further 
reduce the enormous pressure on memory storage and bandwidth in storing 
the weights, activations, and gradient values necessary for training the 
increasingly larger networks. Unlike the IEEE 754R standard, the purpose 
of this standard is mostly to standardize the formats and not necessarily 
to provide for portability of code to guarantee identical numerical result 
across all platforms.  

The IEEE Float16 and Bfloat16 formats described above have a fixed number 
of bits allocated to the mantissa and exponent fields and have a fixed 
exponent bias. However, eight bits can only accommodate a small number 
of mantissa and exponent bits, so some configurability is required to ensure 
high accuracy and convergence of the training models.  

One key property enabling this configurability is the fact that different 
parameters, namely weights, gradients and activations, have different 
precision and dynamic range requirements to achieve high training accuracy 
and convergence. The configurability enables different allocations of the 
number of exponent and mantissa bits, depending on the parameter being 
represented. Moreover, the numeric range these parameters span is also 
very different. Weights and gradients typically have much smaller numerical 
values compared to activations. The latter property allows meeting the 
dynamic range requirements of the various parameters using a configurable 
bias, instead of increasing the number of exponent bits.  

The range of exponent values follows the principle of locality of space 
and time during the execution of a training network, and do not change 
frequently. Thus, only a small number of such exponent biases are used in 
any given execution step, and the appropriate bias values can be learnt 
during the training.  

The two CFloat8 formats with the fully configurable bias are shown in 
Table 3 below. 

No. of Mantissa bits

1 + 3

1 + 2

No. of Exponent bits

4

5

Exponent Bias Value

Unsigned 6-bit integer

Unsigned 6-bit integer

Format

Table 3: Tesla configurable 8-bit Floating Point formats

CFloat8_1_4_3

CFloat8_1_5_2

Sign bit?

Yes

Yes

Normalized numbers, Subnormal (denormal) numbers and Zeros are 
supported in both CFloat8_1_4_3 and CFloat8_1_5_2 formats. Due 
to the limited number of representable exponent values, Infinity and 
NaN encodings are not supported. So, the maximum exponent value is 
not reserved for encoding NaN and Infinity and just used to represent 
normalized floating-point numbers. Any Infinity or NaN operand, or an 
overflow in an arithmetic operation will clamp the result to the maximum 
representable number in each of these formats. 

Numerical value of Zero is represented by an encoding with all zero 
Exponent and all zero Mantissa. Encodings with all zero Exponent and 
non-zero Mantissa represent denormal numbers. 

The numerical value of a normalized floating point number is 
(−1)sign × 2exponent−bias × 1.mantissa while the numerical value of a 
denormal floating point number is (−1)sign × 2−bias × 0.mantissa. 
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With the configurable exponent bias set to the minimum possible value 
(0000002 = 0), the numerical values that can be represented in the 
normalized CFloat_1_4_3 format are shown below. 

Emin = 00012 − 0000002 = 1; Emax = 11112 − 0000002 = 15 

The range of numerical values thus represented is 
+/- [1.0002 x 21, 1.1112 x 215]. 

Similarly, with the exponent bias set to the maximum possible value 
(1111112 = 63),  

Emin = 00012 − 1111112 = -62; Emax = 11112 − 1111112 = -48 

The range of numerical values thus represented is 
+/- [1.0002 x 2-62, 1.1112 x 2-48] 

For normalized floating point numbers in the CFloat8_1_4_3 format, the 
numerical values for exponent bias values of 0, 1, 2, 3,…, 62, 63 are shown in 
Table 4 below. The entire exponent range [-62, 15] can be spanned by this 
format by reconfiguring the exponent bias appropriately. Please note that 
the exponent range with a 4-bit exponent with a fixed bias only spans 15 
consecutive exponent values. For example, for bias = 31, only the exponent 
range [-30, -16] can be spanned. 

Exponent Bias

3

60

1

31

62

0

...

61

2

...

63

Range of Numerical Values

+/-[1.000 x 2-2, 1.111 x 212]

+/-[1.000 x 2-59, 1.111 x 2-45]

+/-[1.000 x 20, 1.111 x 214]

+/-[1.000 x 2-30, 1.111 x 2-16]

+/-[1.000 x 2-61, 1.111 x 2-47]

+/-[1.000 x 21, 1.111 x 215]

+/-[1.000 x 2-60, 1.111 x 2-46]

+/-[1.000 x 2-1, 1.111 x 213]

+/-[1.000 x 2-62, 1.111 x 2-48]

Table 4: Range of numerical values of normalized floating-point numbers 
in CFloat8_1_4_3 format for various exponent bias values
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Similarly, for normalized floating point numbers in the CFloat8_1_5_2 
format, the numerical values for exponent bias values of 0, 1, 2, 3,…, 62, 63 
are shown in Table 5 below. Thus, the entire exponent range [-62, 31] can be 
spanned by this format by reconfiguring the exponent bias appropriately. 
Please note that the exponent range with a 5-bit exponent with a fixed bias 
only spans 31 consecutive exponent values. For example, for bias = 31, only 
the exponent range [-30, 0] can be spanned.

In the CFloat8_1_4_3 format, an Exponent = 00002 and Mantissa = 0002 
represents numerical value of Zero, while Exponent = 00002 and 
Mantissa = 0012, 0102, 0112, 1002, 1012, 1102, and 1112 represent the denormal 
numbers. The corresponding numerical values are 
+/- {0.0012, 0.0102, 0.0112, 0.1002, 0.1012, 0.1102, 0.1112} x 2-bias respectively, 
where bias is the 6-bit exponent bias from 0 to 63. Similarly, in the 
CFloat8_1_5_2 format, an Exponent = 000002 and Mantissa = 002 
represents numerical value of Zero, while Exponent = 000002 and 
Mantissa =012, 102, and 112 represent the denormal numbers. The 
corresponding numerical values are +/- {0.012, 0.102, 0.112} x 2-bias 
respectively, where bias is the 6-bit exponent bias from 0 to 63.  

Gradual underflow with denormal handling is supported in both 
CFloat8_1_4_3 and CFloat8_1_5_2 formats. These formats have limited 
exponent range, and the denormal number support helps increase the 
representable numeric range. The 6-bit bias is chosen as an unsigned 
integer to skew the range of representable values more on the smaller 
numeric values at the expense of larger numerical values, as the 
parameters in the deep learning neural networks are normalized within 
some [-N,N] bound where N is an integer, and thus tend to span very small 
numerical values.

Exponent Bias

3

60

1

31

62

0

...

61

2

...

63

Range of Numerical Values

+/-[1.00 x 2-2, 1.11 x 228]

+/-[1.00 x 2-59, 1.11 x 2-29]

+/-[1.00 x 20, 1.11 x 230]

+/-[1.00 x 2-30, 1.11 x 20]

+/-[1.00 x 2-61, 1.11 x 2-31]

+/-[1.00 x 21, 1.11 x 231]

+/-[1.00 x 2-60, 1.11 x 2-30]

+/-[1.00 x 2-1, 1.11 x 229]

+/-[1.00 x 2-62, 1.11 x 2-32]

Table 5: Range of numerical values of normalized floating-point numbers 
in CFloat8_1_5_2 format for various exponent bias values
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Arithmetic Operations When used as a storage format only, the two CFLoat8 formats, 
CFloat8_1_4_3 and CFloat8_1_5_2, shall support convert operations to and 
from the BFloat16 and IEEE Float32 formats. Two modes of rounding should 
be supported to convert from BFloat16 and IEEE Float32 formats to the two 
CFLoat8 formats—round-to-nearest and stochastic rounding. Stochastic 
rounding is implemented with a Random Number Generator (RNG). The 
arithmetic performed with stochastic rounding should be consistent and 
reproducible when the same seed is used in the RNG. Stochastic rounding 
enables probabilistic rounding with a uniform random number generator 
and enables statistical parameter updates, such as computing stochastic 
gradient descent (SGD) during back propagation in training. Very small 
values are accumulated into larger values, and such updates would not 
happen with IEEE rounding modes. Stochastic rounding is also useful in 
various training computes to add random noise to prevent regularization

The arithmetic operations that the CFloat8 formats should provide are 
implementation dependent. Typically, the CFloat8 formats are used in 
mixed precision arithmetic, where the operands stored in CFloat8 
format in memory may be operated on and expanded to wider data types, 
such as Float32.
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Tesla CFloat16 Formats Two other formats are also specified for 16-bit floating point numbers, 
Signed Half Precision (SHP) and Unsigned Half Precision (UHP) as shown 
below. These formats are used to store parameters such as gradients, in 
cases where the precision of the CFloat8 formats may be too small to 
guarantee the convergence of training networks. The BFloat16 and Float16 
formats both have some limitations for quantization. The BFloat16 format 
has sufficient range but the precision is very limited to quantize many 
parameters, such as gradients, requiring storing in FP32 format. The Float16 
format has more precision, but the range is too small to quantize in many 
cases, also requiring storing in FP32 format. The SHP and UHP formats offer 
the precision of Float16 format while increasing the range of the Float16 
format substantially with the configurable bias. The SHP and UHP formats 
obviate the storage requirement in FP32 format in most cases, reducing the 
memory storage pressure and improving the memory bandwidth further. 
The SHP and UHP formats are shown in Table 6 below.

Normalized numbers, Subnormal numbers (denormal) and Zeros are 
supported in the SHP format. Infinity and NaN encodings are not supported, 
and any overflow, or an Infinity or NaN operand during an arithmetic 
operation will clamp the result to the maximum representable number 
in the destination SHP format. Infinity and NaN are not supported in the 
SHP format since only a small number of exponents can be represented. 
So, the maximum exponent value is not reserved for the NaN and Infinity 
encodings, and just used to represent normalized floating-point numbers. 

Normalized numbers and Zeros are supported in the UHP format. 
Denormal encodings are supported but denormal operands and results 
are flushed to zero. Infinity and NaN encodings are also supported in the 
UHP format as there are more exponent bits than the SHP format to allow 
these two encoding with the maximum exponent value. Infinity is encoded 
as with all ones Exponent and all zero Mantissa, and NaNs are encoded as 
with all ones Exponent and non-zero Mantissa. The NaN propagation and 
Infinity result generation for any arithmetic operation with destination in the 
UHP format follow the specifications in the IEEE 754R standard. In the UHP 
format, Infinity is encoded Exponent =1111112 and Mantissa = 00000000002, 
while NaN is encoded as Exponent = 1111112 and Mantissa ≠ 00000000002. 
Any operation with a NaN in the destination UHP format is encoded as 
a canonical NaN which is encoded as Exponent = 1111112 and Mantissa = 
10000000002.

When used as a storage format, the SHP and UHP formats shall support 
convert operations to and from the Float32 format. Two modes of 
rounding should be supported to convert from IEEE Float32 formats to 
the SHP and UHP formats—round-to-nearest and stochastic rounding. The 
arithmetic operations that the SHP and UHP formats should provide 
are implementation dependent. Typically, these formats are used in 
mixed-precision arithmetic, where the operands stored in SHP or UHP 
format in memory may be operated on and expanded to wider data types, 
such as Float32. 

No. of Mantissa bits

1 + 10

1 + 10

No. of Exponent bits

5

6

Exponent Bias Value

Unsigned 6-bit integer

31

Format

Table 6: Tesla configurable 16-bit Floating Point formats

Signed Half Precision (SHP)

Unsigned half Precision (UHP)

Sign bit?

Yes

No
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Exception Status Flags The following exception status flags are supported in operations with 
CFloat8, SHP, and UHP operands and results: Invalid, Denormal, Overflow 
and Underflow. An arithmetic operation with any denormal operand will 
set the denormal exception flag, while an arithmetic operation with any 
NaN operand or no useful definable result, as specified by the IEEE 754R 
standard, will set the invalid exception flag. Any arithmetic operation with 
CFloat8, SHP, and UHP destination that overflows or underflows, will set the 
overflow and underflow exception flags respectively. The response to the 
setting of the exception flags is implementation dependent. 


